Isomer-selective study of the OH initiated oxidation of isoprene in the presence of O(2) and NO. I. The minor inner OH-addition channel.

نویسندگان

  • Erin E Greenwald
  • Buddhadeb Ghosh
  • Katie C Anderson
  • Kristin S Dooley
  • Peng Zou
  • Talitha Selby
  • David L Osborn
  • Giovanni Meloni
  • Craig A Taatjes
  • Fabien Goulay
  • Simon W North
چکیده

We report isomer-selective kinetics and mechanistic details for the hydroxyl radical-initiated oxidation of isoprene, in the presence of O(2) and NO, employing complementary experimental and theoretical techniques. Using a recently demonstrated photolytic route to initiate isomer-selective kinetics in OH-initiated oxidation of unsaturated hydrocarbons via the UV photolysis of iodohydrins, the photolysis of 1-iodo-2-methyl-3-buten-2-ol results in a single isomer of the possible four OH-isoprene adducts, specifically the minor channel associated with OH addition to one of the inner carbon atoms. Employing both the laser-photolysis/laser-induced fluorescence (LP/LIF) technique and time-dependent multiplexed photoionization mass spectrometry, we find clear experimental evidence supporting the prompt rearrangement of the initially formed beta-hydroxyalkyl radicals to alpha-hydroxyalkyl radicals, in agreement with Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation predictions. We have determined a rate constant of (3.3 +/- 0.5) x 10(-11) cm(3) molecule(-1) s(-1) for molecular oxygen to abstract a hydrogen atom from the alpha-hydroxyalkyl radical to form 4-penten-2-one and HO(2). This reaction provides a mechanistic route to C(5) carbonyl species as first-generation end products for the addition of hydroxyl radical to isoprene in the presence of O(2) and NO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isomer-selective study of the OH-initiated oxidation of isoprene in the presence of O(2) and NO: 2. the major OH addition channel.

We report the first isomeric-selective study of the dominant isomeric pathway in the OH-initiated oxidation of isoprene in the presence of O2 and NO using the laser photolysis-laser induced fluorescence (LP-LIF) technique. The photolysis of monodeuterated/nondeuterated 2-iodo-2-methylbut-3-en-1-ol results exclusively in the dominant OH-isoprene addition product, providing important insight into...

متن کامل

OH radical initiated oxidation of 1,3-butadiene: isomeric selective study of the dominant addition channel.

We report the first isomeric selective kinetic study of the dominant isomeric pathway in the OH initiated oxidation of 1,3-butadiene in the presence of O(2) and NO using the laser photolysis-laser induced fluorescence (LP-LIF) technique. The photodissociation of the precursor 2-iodo-but-3-en-1-ol results exclusively in the dominant OH-butadiene addition product, permitting important insight int...

متن کامل

The OH-initiated oxidation of 1,3-butadiene in the presence of O2 and NO: a photolytic route to study isomeric selective reactivity.

We report the study of the isomeric selective OH-initiated oxidation of 1,3-butadiene in the presence of O2 and NO using the LP/LIF technique. The photolysis of monodeuterated 1-iodo-3-buten-2-ol provides only one of the possible OD-butadiene adducts, the minor addition channel product, simplifying the oxidation mechanism. We find, based on analysis of OD time-dependent traces that prompt rearr...

متن کامل

Electro-Catalytic Oxidation of Methanol at Ni(OH)2 Nanoparticles-Poly (o-Anisidine)/Triton X-100 Film onto Phosphotungstic Acid-Modified Carbon Paste Electrode

In this work, Phosphotungstic Acid modified Carbon Paste Electrode (PWA-CPE) is used as a substrate for electro-polymerization of o-Anisidine (OA). Also, Triton X-100 (TX-100) surfactant is used as an additive for electrochemical polymerization of OA onto the PWA-CPE, which is investigated as a novel matrix for dispersion of nickel species. The prepared electrodes are characterized by...

متن کامل

Isoprene Peroxy Radical Dynamics.

Approximately 500 Tg of 2-methyl-1,3-butadiene (isoprene) is emitted by deciduous trees each year. Isoprene oxidation in the atmosphere is initiated primarily by addition of hydroxyl radicals (OH) to C4 or C1 in a ratio 0.57 ± 0.03 (1σ) to produce two sets of distinct allylic radicals. Oxygen (O2) adds to these allylic radicals either δ (Z or E depending on whether the allylic radical is cis or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 114 2  شماره 

صفحات  -

تاریخ انتشار 2010